Việc kinh doanh

Thư từ năm 2028: Cuộc cách mạng AI thực sự không như chúng ta nghĩ

"Bạn đang chế tạo một chiếc Ferrari cho một thế giới sẽ sớm dịch chuyển tức thời." Một lá thư từ năm 2028: Các công ty chỉ đơn giản "triển khai AI" cũng giống như những công ty chỉ đơn giản "xây dựng một trang web" vào năm 1995. Câu hỏi sai ư? "Làm thế nào chúng ta có thể sử dụng AI để tối ưu hóa X?" Câu hỏi đúng ư? "Nếu chúng ta thiết kế lại từ đầu, liệu X có còn tồn tại không?" Lời khuyên thực tế: Hãy dành 20% nguồn lực AI của bạn không phải để tối ưu hóa những gì bạn làm, mà là để tìm ra những gì nên ngừng làm.

[TUYÊN BỐ MIỄN TRỪ TRÁCH NHIỆM: Đây hoàn toàn là một "lá thư từ tương lai" hư cấu, một thông điệp trong chai được thả vào biển thời gian với một chút khiêu khích và một nụ cười. Không có nhà du hành thời gian nào tham gia vào quá trình viết bài đăng này.]

Kính gửi các đối tác, khách hàng và những người quan sát công nghệ năm 2025,

Tôi là Fabio Lauria, người sáng lập Electe (vâng, chúng ta vẫn tồn tại vào năm 2028!)*, và tôi đã quyết định phá vỡ mọi quy tắc tiếp thị của công ty để chia sẻ với bạn một số suy nghĩ từ phía bên này của cây cầu thời gian.

Vào năm 2025, bạn vẫn đang tranh luận về "cuộc khủng hoảng trung gian" của AI và viết vô số sách trắng về "sự tích hợp đúng đắn" giữa con người và máy móc. Chúng ta, vào năm 2028, nhìn lại giai đoạn đó như một kỷ nguyên mà toàn bộ hệ sinh thái công nghệ hoàn toàn lạc lõng.

Những gì chúng ta hiểu (quá muộn)

Là một người sáng lập đã trải qua ba vòng gọi vốn, hai lần thay đổi và một lần thất bại trong việc mua lại vào phút chót, đây là sự thật mà không một nhà tư vấn chiến lược nào muốn thừa nhận vào năm 2025: Tất cả chúng ta đều đang tối ưu hóa để tìm câu trả lời cho những câu hỏi sai.

Những công ty sáng tạo nhất không phải là những công ty có "chiến lược triển khai AI tốt nhất" mà là những công ty có đủ can đảm để định nghĩa lại hoàn toàn những vấn đề mà họ đang cố gắng giải quyết.

Mặc kệ hiệu quả (vâng, tôi thực sự đã nói thế)

Vào năm 2025, các KPI của bạn vẫn đo lường tốc độ AI có thể thực hiện các tác vụ hiện có. Còn vào năm 2028, chúng ta đo lường mức độ AI cho phép chúng ta xem xét lại các tác vụ đó một cách triệt để, hoặc loại bỏ hoàn toàn chúng.

Bước ngoặt đến khi chúng ta ngừng hỏi: "Làm thế nào chúng ta có thể sử dụng AI để tối ưu hóa quy trình X?" và bắt đầu hỏi: "Nếu chúng ta có thể thiết kế lại công ty từ đầu bằng những công nghệ này, liệu quy trình X có còn tồn tại không?"

Gửi đến các công ty đang đọc tôi

Nếu bạn là một công ty đầu tư hàng triệu đô la vào "sự cải tiến gia tăng" thông qua AI, bạn đang chế tạo một chiếc Ferrari cho một thế giới sẽ sớm dịch chuyển tức thời.

Sau đây là những điều mà CTO của bạn thực sự nên làm:

  1. Xác định những phần nào trong mô hình kinh doanh của bạn chỉ tồn tại do những hạn chế về công nghệ lỗi thời
  2. Xác định những vấn đề nào của khách hàng mà bạn đang giải quyết gián tiếp mà bạn có thể giải quyết trực tiếp
  3. Biến nhóm sản phẩm của bạn thành phòng thí nghiệm "phá hủy sáng tạo" - trao cho họ sức mạnh không chỉ để xây dựng mà còn để phá hủy.

Những công ty khởi nghiệp đang chiếm lĩnh thị trường của bạn vào năm 2028 không phải là những công ty sở hữu AI tốt nhất. Họ là những công ty đã sử dụng AI để định nghĩa lại hoàn toàn ý nghĩa của việc trở thành một công ty trong ngành của bạn.

Một lời mời gọi trí tưởng tượng cấp tiến

Theo dòng thời gian của tôi, những công ty chỉ đơn giản "triển khai AI" cũng giống như những công ty chỉ đơn giản "xây dựng một trang web" vào năm 1995. Điều này là cần thiết, nhưng đáng tiếc là vẫn chưa đủ.

Các công ty thống trị là những công ty có đủ can đảm để tưởng tượng: "Nếu chúng ta có thể giải quyết vấn đề này từ đầu, bằng những công nghệ có vẻ như kỳ diệu, thì chúng ta sẽ làm như thế nào?"

Vì vậy, trong khi mọi người vào năm 2025 đang bận rộn tranh luận về sự cân bằng phù hợp giữa tự động hóa và tiềm năng con người, hãy tự giúp mình một việc: tự hỏi liệu những vấn đề bạn đang cố gắng giải quyết có còn tồn tại sau ba năm nữa hay không.

Hẹn gặp lại bạn ở đây trong tương lai. Nó kỳ lạ hơn, hoang dã hơn và thú vị hơn vô cùng so với những gì bạn dự đoán trong các báo cáo nhàm chán.

Fabio Lauria, Tổng giám đốc điều hành & Nhà sáng lập, Electe , Ngày 11 tháng 5 năm 2028

Tái bút: Amazon vừa mua lại OpenAI. Và đúng vậy, tất cả chúng tôi đều sốc như bạn vậy.

Câu hỏi thường gặp từ hiện tại đến tương lai

H: Anh có phải là John Titor mới không? Chúng ta có nên lo lắng về những nghịch lý thời gian không?

A: Không giống như Titor, tôi không ở đây để cảnh báo bạn về những thảm họa sắp xảy ra hay nói về IBM 5100. Tôi không sở hữu một chiếc C204 Time Displacement Unit gắn trên xe Chevrolet—chỉ là một chiếc máy tính xách tay chứa quá nhiều caffeine. "Du hành thời gian" của tôi hoàn toàn diễn ra thông qua suy đoán sáng tạo. Không có sự liên tục không-thời gian nào bị phá vỡ trong quá trình viết bài này.

H: Chúng ta nên mua/bán những công ty nào dựa trên "những hiểu biết về tương lai" của bạn?

A: Nếu tôi thực sự đến từ tương lai và có thông tin này, việc chia sẻ nó sẽ là cách cuối cùng để giữ cho nó chính xác! Chính việc tiết lộ thông tin tương lai đã thay đổi tiến trình hiện tại. Dù sao đi nữa, đầu tư dựa trên những bài đăng khiêu khích trên internet thường là một chiến lược đáng ngờ. Xin trích dẫn một người thông thái cùng thời với tôi: "Thị trường có thể duy trì trạng thái phi lý trí lâu hơn khả năng thanh toán của bạn."

H: Ý bạn muốn nói gì khi nhắc đến "sự cố Denver"?

A: À, đúng rồi. Cứ cho là vào năm 2026, tất cả chúng ta sẽ học được một bài học quan trọng về giới hạn của tối ưu hóa thuật toán trong các hệ thống quan trọng. Nhưng đừng quá lo lắng - nó đã thúc đẩy những cải cách rất cần thiết và dẫn đến Tuyên bố Denver về Trách nhiệm Công nghệ. Như tôi vẫn thường nói, đôi khi bạn phải phá vỡ một thuật toán để tạo ra một cuộc cách mạng .

H: Ông có nghiêm túc về ý tưởng rằng chúng ta nên ngừng tập trung vào hiệu quả không?

A: Tôi không ủng hộ việc từ bỏ hiệu quả, mà là đặt nó vào đúng vị trí của nó: một phương tiện, chứ không phải mục đích. Hiệu quả mà không có định hướng cũng giống như lái một chiếc Ferrari không có đích đến. Trong năm 2028 của tôi, những công ty thông minh nhất trước tiên tự hỏi: "Chúng ta nên tạo ra cái gì?", rồi mới đến "Làm thế nào để tạo ra nó một cách hiệu quả?". Việc đảo ngược những câu hỏi này chính là sai lầm chung của chúng ta.

H: Lời khuyên thực tế thực sự đằng sau tất cả những câu chuyện mang tính tương lai này là gì?

A: Hãy dành 20% tài nguyên AI của bạn không phải để tối ưu hóa những gì bạn đang làm, mà để khám phá những gì bạn có thể ngừng làm hoàn toàn. Lợi thế cạnh tranh thực sự sẽ không nằm ở những người làm những việc cũ nhanh hơn, mà nằm ở những người đầu tiên nhận ra rằng một số việc đó không còn cần thiết nữa. Sự phá hủy mang tính sáng tạo bắt đầu từ chính ngôi nhà của bạn.

[TUYÊN BỐ MIỄN TRỪ TRÁCH NHIỆM: Nội dung trên hoàn toàn là hư cấu sáng tạo. Không ngụ ý bất kỳ dự đoán thị trường, tư vấn tài chính hay kiến thức thực tế nào về tương lai. Tác giả không chịu trách nhiệm cho các quyết định kinh doanh được đưa ra dựa trên những thông điệp trong chai từ các mốc thời gian khác nhau.]

Tài nguyên cho sự phát triển kinh doanh

Ngày 9 tháng 11 năm 2025

Ảo tưởng về lý luận: Cuộc tranh luận làm rung chuyển thế giới AI

Apple công bố hai bài báo gây chấn động—"GSM-Symbolic" (tháng 10 năm 2024) và "The Illusion of Thinking" (tháng 6 năm 2025)—chứng minh cách các chương trình Thạc sĩ Luật (LLM) thất bại trong việc xử lý các biến thể nhỏ của các bài toán kinh điển (Tháp Hà Nội, vượt sông): "Hiệu suất giảm khi chỉ có các giá trị số bị thay đổi." Không có thành công nào trên một Tháp Hà Nội phức tạp. Nhưng Alex Lawsen (Open Philanthropy) phản bác bằng bài báo "The Illusion of the Illusion of Thinking", chứng minh phương pháp luận sai lầm: thất bại là giới hạn đầu ra token, chứ không phải sự sụp đổ của lý luận, các tập lệnh tự động phân loại sai các đầu ra một phần chính xác, một số câu đố không thể giải được về mặt toán học. Bằng cách lặp lại các bài kiểm tra với các hàm đệ quy thay vì liệt kê các bước di chuyển, Claude/Gemini/GPT đã giải được bài toán Tháp Hà Nội 15 đĩa. Gary Marcus ủng hộ luận điểm "chuyển dịch phân phối" của Apple, nhưng một bài báo về thời gian trước WWDC lại đặt ra những câu hỏi chiến lược. Ý nghĩa kinh doanh: chúng ta nên tin tưởng AI đến mức nào cho các nhiệm vụ quan trọng? Giải pháp: phương pháp tiếp cận thần kinh biểu tượng—mạng nơ-ron để nhận dạng mẫu + ngôn ngữ, hệ thống biểu tượng cho logic hình thức. Ví dụ: AI kế toán hiểu được câu hỏi "Tôi đã chi bao nhiêu cho du lịch?" nhưng SQL/tính toán/kiểm toán thuế = mã xác định.
Ngày 9 tháng 11 năm 2025

🤖 Tech Talk: Khi AI phát triển ngôn ngữ bí mật của chúng

Trong khi 61% mọi người đã cảnh giác với AI hiểu được, vào tháng 2 năm 2025, Gibberlink đã thu hút được 15 triệu lượt xem bằng cách trình bày một điều hoàn toàn mới: hai AI ngừng nói tiếng Anh và giao tiếp bằng âm thanh cao độ ở mức 1875-4500 Hz, con người không thể hiểu được. Đây không phải là khoa học viễn tưởng, mà là một giao thức FSK cải thiện hiệu suất lên 80%, lật đổ Điều 13 của Đạo luật AI của EU và tạo ra độ mờ đục hai lớp: các thuật toán khó hiểu phối hợp bằng các ngôn ngữ không thể giải mã. Khoa học cho thấy chúng ta có thể học các giao thức máy (như mã Morse ở tốc độ 20-40 từ/phút), nhưng chúng ta phải đối mặt với giới hạn sinh học không thể vượt qua: 126 bit/giây đối với con người so với Mbps+ đối với máy móc. Ba nghề nghiệp mới đang nổi lên—Nhà phân tích giao thức AI, Kiểm toán viên truyền thông AI và Nhà thiết kế giao diện người-AI—khi IBM, Google và Anthropic phát triển các tiêu chuẩn (ACP, A2A, MCP) để tránh hộp đen cuối cùng. Các quyết định đưa ra ngày nay về giao thức truyền thông AI sẽ định hình quỹ đạo của trí tuệ nhân tạo trong nhiều thập kỷ tới.