Việc kinh doanh

Nghịch lý năng suất AI: Suy nghĩ trước khi hành động

"Chúng ta thấy AI ở khắp mọi nơi, ngoại trừ trong thống kê năng suất" - nghịch lý Solow lặp lại 40 năm sau. McKinsey 2025: 92% công ty sẽ tăng đầu tư vào AI, nhưng chỉ 1% triển khai "trưởng thành". 67% báo cáo rằng ít nhất một sáng kiến ​​đã làm giảm năng suất chung. Giải pháp không phải là tăng cường công nghệ, mà là hiểu rõ bối cảnh tổ chức: lập bản đồ năng lực, thiết kế lại quy trình, các chỉ số thích ứng. Câu hỏi đúng không phải là "chúng ta đã tự động hóa được bao nhiêu?" mà là "hiệu quả đến mức nào?"

"Nghịch lý Năng suất AI" là một thách thức nghiêm trọng đối với các doanh nghiệp: mặc dù đã đầu tư đáng kể vào công nghệ AI, nhiều công ty vẫn không đạt được lợi nhuận năng suất mong đợi. Hiện tượng này, được quan sát vào mùa xuân năm 2025, gợi nhớ đến nghịch lý ban đầu được nhà kinh tế học Robert Solow xác định vào những năm 1980 liên quan đến máy tính: "Chúng ta thấy máy tính ở khắp mọi nơi, ngoại trừ trong thống kê năng suất."

Chìa khóa để vượt qua nghịch lý này không chỉ là sự hợp tác giữa con người và máy móc, mà còn là sự hiểu biết sâu sắc về các hệ thống AI mà bạn định áp dụng và bối cảnh tổ chức mà chúng sẽ được triển khai.

Nguyên nhân của nghịch lý

1. Thực hiện bừa bãi

Nhiều tổ chức triển khai các giải pháp AI mà không đánh giá đầy đủ cách chúng tích hợp vào quy trình làm việc hiện có. Theo khảo sát của McKinsey năm 2025, 67% công ty báo cáo rằng ít nhất một sáng kiến AI đã gây ra những biến chứng bất ngờ, làm giảm năng suất chung. Các công ty có xu hướng tối ưu hóa từng tác vụ riêng lẻ mà không cân nhắc đến tác động lên toàn bộ hệ thống.

2. Khoảng cách thực hiện

Có một độ trễ tự nhiên giữa việc giới thiệu một công nghệ mới và việc hiện thực hóa lợi ích của nó. Điều này đặc biệt đúng với các công nghệ đa năng như AI. Như nghiên cứu từ MIT và Đại học Chicago đã chỉ ra, AI đòi hỏi rất nhiều "phát minh bổ sung" - thiết kế lại quy trình, kỹ năng mới và thay đổi văn hóa - trước khi phát huy hết tiềm năng của nó.

3. Thiếu sự trưởng thành của tổ chức

Một báo cáo của McKinsey năm 2025 cho thấy trong khi 92% công ty có kế hoạch tăng đầu tư vào AI trong ba năm tới, thì chỉ có 1% tổ chức xác định việc triển khai AI của họ là "trưởng thành", nghĩa là được tích hợp hoàn toàn vào quy trình làm việc với kết quả kinh doanh đáng kể.

Chiến lược để vượt qua nghịch lý

1. Đánh giá chiến lược trước khi áp dụng

Trước khi triển khai bất kỳ giải pháp AI nào, các tổ chức nên tiến hành đánh giá toàn diện để trả lời các câu hỏi chính:

  • Công nghệ này sẽ giải quyết những vấn đề kinh doanh cụ thể nào?
  • Nó sẽ tích hợp vào quy trình làm việc hiện tại như thế nào?
  • Cần có những thay đổi về mặt tổ chức nào để hỗ trợ điều này?
  • Những tác dụng phụ tiêu cực tiềm ẩn của việc thực hiện là gì?

2. Hiểu bối cảnh tổ chức

Hiệu quả của AI phụ thuộc phần lớn vào văn hóa và cấu trúc của tổ chức nơi ứng dụng. Theo khảo sát của Gallup năm 2024, trong số những nhân viên cho biết tổ chức của họ có chiến lược rõ ràng về tích hợp AI, 87% tin rằng AI sẽ có tác động tích cực đáng kể đến năng suất và hiệu quả làm việc của họ. Sự minh bạch và truyền thông là chìa khóa.

3. Lập bản đồ năng lực

Các tổ chức thành công thường phân tích tỉ mỉ xem khía cạnh nào trong công việc của họ được hưởng lợi từ sự đánh giá của con người so với quá trình xử lý của AI, thay vì tự động hóa mọi thứ khả thi về mặt kỹ thuật. Cách tiếp cận này đòi hỏi sự hiểu biết sâu sắc về cả khả năng của AI và những kỹ năng đặc thù của con người trong tổ chức.

4. Thiết kế lại quy trình làm việc

Việc triển khai AI hiệu quả thường đòi hỏi việc tái cấu trúc quy trình thay vì chỉ đơn giản là thay thế các tác vụ của con người bằng tự động hóa. Các công ty phải sẵn sàng xem xét lại toàn bộ cách thức thực hiện công việc, thay vì áp dụng AI lên các quy trình hiện có.

5. Số liệu thích ứng

Thành công của AI không chỉ nên được đo lường bằng mức độ hiệu quả mà còn bằng cách các nhóm thích ứng hiệu quả với các khả năng AI mới. Các tổ chức nên phát triển các chỉ số đánh giá cả kết quả kỹ thuật lẫn khả năng ứng dụng của con người.

Mô hình trưởng thành AI mới

Vào năm 2025, các tổ chức cần một khuôn khổ mới để đánh giá mức độ trưởng thành của AI - một khuôn khổ ưu tiên tích hợp hơn là triển khai. Câu hỏi không còn là "Chúng ta đã tự động hóa được bao nhiêu?" mà là "Chúng ta đã cải thiện năng lực của tổ chức thông qua tự động hóa hiệu quả như thế nào?"

Điều này thể hiện sự thay đổi sâu sắc trong cách chúng ta khái niệm hóa mối quan hệ giữa công nghệ và năng suất. Các tổ chức hiệu quả nhất tuân theo một quy trình gồm nhiều bước:

  1. Lập kế hoạch và lựa chọn công cụ : Xây dựng kế hoạch chiến lược xác định rõ ràng các mục tiêu kinh doanh và công nghệ AI phù hợp nhất.
  2. Sẵn sàng về dữ liệu và cơ sở hạ tầng : Đảm bảo các hệ thống và dữ liệu hiện có sẵn sàng hỗ trợ các sáng kiến AI.
  3. Sự thống nhất về văn hóa : Tạo ra môi trường hỗ trợ việc áp dụng AI thông qua đào tạo, giao tiếp minh bạch và quản lý thay đổi.
  4. Triển khai theo từng giai đoạn : Giới thiệu các giải pháp AI theo từng bước, theo dõi cẩn thận tác động và điều chỉnh cách tiếp cận dựa trên những phát hiện.
  5. Đánh giá liên tục : Đo lường thường xuyên cả kết quả kỹ thuật và tác động lên toàn bộ tổ chức.

Phần kết luận

Nghịch lý Năng suất AI không phải là lý do để trì hoãn việc áp dụng AI, mà là lời kêu gọi hãy áp dụng nó một cách thận trọng hơn. Chìa khóa để vượt qua nghịch lý này nằm ở việc hiểu rõ các hệ thống AI mà bạn dự định triển khai và phân tích bối cảnh tổ chức mà chúng sẽ được sử dụng.

Các tổ chức tích hợp AI thành công không chỉ tập trung vào công nghệ mà còn vào cách nó phù hợp với hệ sinh thái cụ thể của tổ chức. Họ đánh giá cẩn thận những ưu điểm và nhược điểm tiềm ẩn trước khi áp dụng, chuẩn bị đầy đủ cơ sở hạ tầng và văn hóa, đồng thời triển khai các chiến lược quản lý thay đổi hiệu quả.

Nguồn

  1. Sáng kiến của MIT về nền kinh tế số - https://ide.mit.edu/sites/default/files/publications/IDE%20Research%20Brief_v0118.pdf
  2. McKinsey & Company - https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/superagency-in-the-workplace-empowering-people-to-unlock-ais-full-potential-at-work
  3. Brynjolfsson, E., Rock, D., & Syverson, C. - https://www.nber.org/papers/w24001
  4. Nơi làm việc của Gallup - https://www.gallup.com/workplace/652727/strategy-fail-without-culture-supports.aspx
  5. PwC - https://www.pwc.com/us/en/tech-effect/ai-analytics/ai-predictions.html
  6. Quan điểm theo cấp số nhân - https://www.exponentialview.co/p/ais-productivity-paradox-how-it-might
  7. KPMG - https://kpmg.com/us/en/articles/2024/ai-ready-corporate-culture.html
  8. Tạp chí Quản lý MIT Sloan - https://sloanreview.mit.edu/article/unpacking-the-ai-productivity-paradox/

Tài nguyên cho sự phát triển kinh doanh

Ngày 9 tháng 11 năm 2025

Quy định về AI cho các ứng dụng tiêu dùng: Cách chuẩn bị cho các quy định mới năm 2025

Năm 2025 đánh dấu sự kết thúc của kỷ nguyên "Miền Tây Hoang dã" của AI: Đạo luật AI của EU có hiệu lực vào tháng 8 năm 2024, với các yêu cầu về kiến ​​thức AI từ ngày 2 tháng 2 năm 2025, và quản trị cùng GPAI từ ngày 2 tháng 8. California dẫn đầu với SB 243 (ra đời sau vụ tự tử của Sewell Setzer, một cậu bé 14 tuổi đã phát triển mối quan hệ tình cảm với chatbot), trong đó áp đặt lệnh cấm các hệ thống khen thưởng cưỡng chế, phát hiện ý định tự tử, nhắc nhở "Tôi không phải là người" ba giờ một lần, kiểm toán công khai độc lập và phạt 1.000 đô la cho mỗi vi phạm. SB 420 yêu cầu đánh giá tác động đối với "các quyết định tự động có rủi ro cao" với quyền kháng cáo lên cơ quan chức năng. Thực thi thực tế: Noom bị kiện vào năm 2022 vì bot đóng giả làm huấn luyện viên con người, một khoản bồi thường trị giá 56 triệu đô la. Xu hướng quốc gia: Alabama, Hawaii, Illinois, Maine và Massachusetts phân loại việc không thông báo cho chatbot AI là vi phạm UDAP. Phương pháp tiếp cận rủi ro ba cấp độ—các hệ thống quan trọng (y tế/giao thông/năng lượng), chứng nhận trước khi triển khai, công bố thông tin minh bạch hướng đến người tiêu dùng, đăng ký mục đích chung và kiểm tra bảo mật. Quy định chắp vá mà không có quyền ưu tiên của liên bang: các công ty đa quốc gia phải điều chỉnh các yêu cầu thay đổi. EU từ tháng 8 năm 2026: thông báo cho người dùng về tương tác AI trừ khi nội dung rõ ràng do AI tạo ra được gắn nhãn là có thể đọc được bằng máy.
Ngày 9 tháng 11 năm 2025

Quản lý những thứ không được tạo ra: Liệu châu Âu có nguy cơ mất đi sự liên quan về mặt công nghệ không?

Châu Âu chỉ thu hút được một phần mười đầu tư toàn cầu vào AI, nhưng lại tuyên bố áp đặt các quy tắc toàn cầu. Đây chính là "Hiệu ứng Brussels" - áp đặt các quy định toàn cầu thông qua sức mạnh thị trường mà không thúc đẩy đổi mới. Đạo luật AI có hiệu lực theo lịch trình so le cho đến năm 2027, nhưng các tập đoàn công nghệ đa quốc gia đang phản ứng bằng các chiến lược né tránh sáng tạo: viện dẫn bí mật thương mại để tránh tiết lộ dữ liệu đào tạo, đưa ra các bản tóm tắt tuân thủ kỹ thuật nhưng khó hiểu, sử dụng phương pháp tự đánh giá để hạ cấp hệ thống từ "rủi ro cao" xuống "rủi ro tối thiểu" và tham gia vào việc mua bán diễn đàn bằng cách chọn các quốc gia thành viên có quy định kiểm soát ít nghiêm ngặt hơn. Nghịch lý về bản quyền ngoài lãnh thổ: EU yêu cầu OpenAI tuân thủ luật pháp châu Âu ngay cả đối với việc đào tạo bên ngoài châu Âu - một nguyên tắc chưa từng thấy trong luật pháp quốc tế. "Mô hình kép" xuất hiện: các phiên bản giới hạn của châu Âu so với các phiên bản toàn cầu tiên tiến của cùng một sản phẩm AI. Rủi ro thực sự: Châu Âu trở thành một "pháo đài kỹ thuật số" bị cô lập khỏi đổi mới toàn cầu, với công dân châu Âu tiếp cận các công nghệ kém hơn. Tòa án Công lý đã bác bỏ lời biện hộ "bí mật thương mại" trong vụ kiện chấm điểm tín dụng, nhưng sự không chắc chắn trong diễn giải vẫn còn rất lớn—chính xác thì "tóm tắt chi tiết đầy đủ" nghĩa là gì? Không ai biết. Câu hỏi cuối cùng chưa được trả lời: EU đang tạo ra một con đường thứ ba đạo đức giữa chủ nghĩa tư bản Hoa Kỳ và sự kiểm soát của nhà nước Trung Quốc, hay chỉ đơn giản là xuất khẩu bộ máy quan liêu sang một lĩnh vực mà nó không cạnh tranh? Hiện tại: một quốc gia dẫn đầu thế giới về quy định AI, nhưng đang trong giai đoạn phát triển. Một chương trình khổng lồ.
Ngày 9 tháng 11 năm 2025

Ngoại lệ: Nơi khoa học dữ liệu gặp gỡ những câu chuyện thành công

Khoa học dữ liệu đã đảo ngược mô hình: các giá trị ngoại lệ không còn là "lỗi cần loại bỏ" mà là thông tin giá trị cần được hiểu. Một giá trị ngoại lệ đơn lẻ có thể làm biến dạng hoàn toàn mô hình hồi quy tuyến tính - thay đổi độ dốc từ 2 thành 10 - nhưng việc loại bỏ nó có thể đồng nghĩa với việc mất đi tín hiệu quan trọng nhất trong tập dữ liệu. Học máy giới thiệu các công cụ tinh vi: Rừng Cô lập cô lập các giá trị ngoại lệ bằng cách xây dựng cây quyết định ngẫu nhiên, Hệ số Ngoại lệ Cục bộ phân tích mật độ cục bộ, và Bộ mã hóa Tự động tái tạo dữ liệu bình thường và đánh dấu những gì chúng không thể tái tạo. Có các giá trị ngoại lệ toàn cầu (nhiệt độ -10°C ở vùng nhiệt đới), các giá trị ngoại lệ theo ngữ cảnh (chi 1.000 euro ở một khu dân cư nghèo) và các giá trị tập thể (lưu lượng mạng đạt đỉnh đồng bộ cho thấy có tấn công). Một điểm tương đồng với Gladwell: "quy tắc 10.000 giờ" đang bị tranh cãi - Paul McCartney đã nói, "Nhiều ban nhạc đã biểu diễn 10.000 giờ ở Hamburg mà không thành công; lý thuyết này không phải là hoàn hảo." Thành công toán học châu Á không phải do di truyền mà do văn hóa: Hệ thống số trực quan hơn của Trung Quốc, canh tác lúa đòi hỏi sự cải tiến liên tục so với sự bành trướng lãnh thổ của nền nông nghiệp phương Tây. Ứng dụng thực tế: Các ngân hàng Anh thu hồi 18% tổn thất tiềm ẩn thông qua phát hiện bất thường theo thời gian thực, sản xuất phát hiện các lỗi vi mô mà kiểm tra thủ công có thể bỏ sót, chăm sóc sức khỏe xác thực dữ liệu thử nghiệm lâm sàng với độ nhạy phát hiện bất thường trên 85%. Bài học cuối cùng: Khi khoa học dữ liệu chuyển từ loại bỏ các giá trị ngoại lai sang hiểu rõ chúng, chúng ta phải xem những nghề nghiệp phi truyền thống không phải là những bất thường cần được khắc phục mà là những quỹ đạo giá trị cần được nghiên cứu.