Cập nhật

Hiện đã có hỗ trợ qua điện thoại!

Kênh liên hệ mới đã hoạt động. Số điện thoại: +39 0230356790, có thể liên lạc trong giờ hành chính. Chỉ nhận cuộc gọi đến—không nhận cuộc gọi đi hoặc tin nhắn. Cách khác: điền mẫu liên hệ trên trang web. Thử lại

Hiện đã có hỗ trợ qua điện thoại!

Chúng tôi vui mừng thông báo rằng số điện thoại mới của chúng tôi hiện đã hoạt động.
Bây giờ bạn có thể liên hệ trực tiếp với chúng tôi nếu có bất kỳ nhu cầu, yêu cầu hoặc thông tin nào.
Số điện thoại của chúng tôi là +39 0230356790.


Giờ làm việc: Giờ hành chính. Quý khách có nhu cầu, vui lòng sử dụng mẫu liên hệ trên trang web của chúng tôi.

Lưu ý quan trọng: Số này chỉ dành cho các cuộc gọi đến. Chúng tôi không thực hiện cuộc gọi đi hoặc gửi tin nhắn văn bản từ số này.
Đội ngũ thư ký của chúng tôi luôn sẵn sàng phục vụ bạn với sự chuyên nghiệp và chuyên môn cao nhất.

Chúng tôi rất vui khi được cung cấp cho bạn kênh truyền thông mới này!

Tài nguyên cho sự phát triển kinh doanh

Ngày 9 tháng 11 năm 2025

Ảo tưởng về lý luận: Cuộc tranh luận làm rung chuyển thế giới AI

Apple công bố hai bài báo gây chấn động—"GSM-Symbolic" (tháng 10 năm 2024) và "The Illusion of Thinking" (tháng 6 năm 2025)—chứng minh cách các chương trình Thạc sĩ Luật (LLM) thất bại trong việc xử lý các biến thể nhỏ của các bài toán kinh điển (Tháp Hà Nội, vượt sông): "Hiệu suất giảm khi chỉ có các giá trị số bị thay đổi." Không có thành công nào trên một Tháp Hà Nội phức tạp. Nhưng Alex Lawsen (Open Philanthropy) phản bác bằng bài báo "The Illusion of the Illusion of Thinking", chứng minh phương pháp luận sai lầm: thất bại là giới hạn đầu ra token, chứ không phải sự sụp đổ của lý luận, các tập lệnh tự động phân loại sai các đầu ra một phần chính xác, một số câu đố không thể giải được về mặt toán học. Bằng cách lặp lại các bài kiểm tra với các hàm đệ quy thay vì liệt kê các bước di chuyển, Claude/Gemini/GPT đã giải được bài toán Tháp Hà Nội 15 đĩa. Gary Marcus ủng hộ luận điểm "chuyển dịch phân phối" của Apple, nhưng một bài báo về thời gian trước WWDC lại đặt ra những câu hỏi chiến lược. Ý nghĩa kinh doanh: chúng ta nên tin tưởng AI đến mức nào cho các nhiệm vụ quan trọng? Giải pháp: phương pháp tiếp cận thần kinh biểu tượng—mạng nơ-ron để nhận dạng mẫu + ngôn ngữ, hệ thống biểu tượng cho logic hình thức. Ví dụ: AI kế toán hiểu được câu hỏi "Tôi đã chi bao nhiêu cho du lịch?" nhưng SQL/tính toán/kiểm toán thuế = mã xác định.
Ngày 9 tháng 11 năm 2025

🤖 Tech Talk: Khi AI phát triển ngôn ngữ bí mật của chúng

Trong khi 61% mọi người đã cảnh giác với AI hiểu được, vào tháng 2 năm 2025, Gibberlink đã thu hút được 15 triệu lượt xem bằng cách trình bày một điều hoàn toàn mới: hai AI ngừng nói tiếng Anh và giao tiếp bằng âm thanh cao độ ở mức 1875-4500 Hz, con người không thể hiểu được. Đây không phải là khoa học viễn tưởng, mà là một giao thức FSK cải thiện hiệu suất lên 80%, lật đổ Điều 13 của Đạo luật AI của EU và tạo ra độ mờ đục hai lớp: các thuật toán khó hiểu phối hợp bằng các ngôn ngữ không thể giải mã. Khoa học cho thấy chúng ta có thể học các giao thức máy (như mã Morse ở tốc độ 20-40 từ/phút), nhưng chúng ta phải đối mặt với giới hạn sinh học không thể vượt qua: 126 bit/giây đối với con người so với Mbps+ đối với máy móc. Ba nghề nghiệp mới đang nổi lên—Nhà phân tích giao thức AI, Kiểm toán viên truyền thông AI và Nhà thiết kế giao diện người-AI—khi IBM, Google và Anthropic phát triển các tiêu chuẩn (ACP, A2A, MCP) để tránh hộp đen cuối cùng. Các quyết định đưa ra ngày nay về giao thức truyền thông AI sẽ định hình quỹ đạo của trí tuệ nhân tạo trong nhiều thập kỷ tới.