Newsletter

Trí tuệ nhân tạo trong lĩnh vực năng lượng: Giải pháp mới cho sản xuất và phân phối

Siemens Energy: Giảm 30% thời gian ngừng hoạt động. GE: Tiết kiệm 1 tỷ đô la mỗi năm. Iberdrola: Giảm 25% chất thải từ năng lượng tái tạo. AI đang chuyển đổi quản lý năng lượng: dự báo thời tiết để tối ưu hóa năng lượng mặt trời và gió, bảo trì dự đoán, lưới điện thông minh dự đoán sự cố. Nhưng có một nghịch lý: các trung tâm dữ liệu AI tiêu thụ hàng trăm kilowatt giờ mỗi buổi đào tạo. Giải pháp? Một chu trình tuần hoàn - AI quản lý năng lượng tái tạo cung cấp năng lượng cho các hệ thống AI.

Trí tuệ nhân tạo (AI) đang chuyển đổi quản lý năng lượng bằng cách tối ưu hóa năng lượng tái tạo và lưới điện thông minh. Các thuật toán giúp các công ty điện lực:

  • Giảm lượng khí thải CO2
  • Cải thiện độ tin cậy của năng lượng tái tạo
  • Dự báo nhu cầu
  • Ngăn chặn sự gián đoạn
  • Tối ưu hóa phân phối

Sự va chạm

  1. Sản xuất điện:

Các thuật toán dự đoán cải thiện độ tin cậy của năng lượng tái tạo bằng cách dự đoán điều kiện thời tiết cho năng lượng mặt trời và gió. Bảo trì dự đoán giúp giảm thời gian ngừng hoạt động và chi phí vận hành cho các nhà máy điện.

  1. Tiêu thụ năng lượng:

Người dùng có thể chuyển mức tiêu thụ sang giờ thấp điểm, giảm chi phí và tải cho lưới điện. Hệ thống nhà thông minh tự động điều chỉnh nhiệt độ, ánh sáng và các thiết bị điện.

  1. Quản lý mạng

Công nghệ số hiện đại đang cách mạng hóa cách chúng ta quản lý cơ sở hạ tầng năng lượng. Trí tuệ nhân tạo (AI) đặc biệt đang chứng tỏ là một công cụ hữu ích cho các công ty phân phối điện. Các hệ thống tiên tiến này liên tục phân tích lượng dữ liệu khổng lồ từ các cảm biến được phân phối trên toàn mạng lưới, từ đường dây truyền tải đến các trạm biến áp.

Nhờ các thuật toán học máy tinh vi, giờ đây có thể xác định các vấn đề tiềm ẩn trước khi chúng gây gián đoạn dịch vụ. Phương pháp phòng ngừa này, được gọi là bảo trì dự đoán, đang mang lại những kết quả đáng chú ý: một số công ty trong lĩnh vực này đã báo cáo sự giảm đáng kể tình trạng gián đoạn dịch vụ, dẫn đến sự cải thiện đáng kể chất lượng dịch vụ cung cấp cho người dân và doanh nghiệp.

Tác động của quá trình chuyển đổi công nghệ này không chỉ đơn thuần là giảm thiểu sự cố. Khả năng dự đoán và ngăn ngừa sự cố cho phép quản lý tài nguyên hiệu quả hơn, lập kế hoạch can thiệp tốt hơn, và cuối cùng là cung cấp dịch vụ điện đáng tin cậy và bền vững hơn cho toàn bộ cộng đồng.

Ví dụ về tác động:

  • Siemens Energy: -30% thời gian ngừng hoạt động
  • General Electric: Tiết kiệm 1 tỷ đô la mỗi năm
  • Iberdrola: -25% lãng phí năng lượng trong năng lượng tái tạo

Các ứng dụng đã thử nghiệm :

  • Shell và BP: tối ưu hóa hoạt động và giảm phát thải
  • Tesla: Lưu trữ năng lượng và giải pháp sạch
  • Duke Energy và National Grid: Hiện đại hóa mạng lưới

AI cải thiện việc quản lý năng lượng bằng cách:

  • Hiệu quả hơn
  • Đáng tin cậy hơn
  • Bền vững hơn
  • Rẻ hơn

Những phát triển này hỗ trợ quá trình chuyển đổi sang hệ thống năng lượng bền vững hơn thông qua các giải pháp công nghệ đã có thể áp dụng trong lĩnh vực này.

Kết luận

Trí tuệ nhân tạo (AI) đang cách mạng hóa ngành năng lượng, cung cấp các giải pháp sáng tạo để tối ưu hóa sản xuất, phân phối và tiêu thụ năng lượng. Tuy nhiên, bản thân AI cũng có tác động riêng đến năng lượng. Các trung tâm tính toán cần thiết để đào tạo và vận hành các mô hình AI đòi hỏi một lượng năng lượng đáng kể, ước tính mức tiêu thụ có thể lên tới vài trăm kilowatt-giờ cho một phiên đào tạo các mô hình phức tạp.

Để tối đa hóa lợi ích ròng của AI trong lĩnh vực năng lượng, các công ty đang áp dụng một phương pháp tiếp cận toàn diện. Một mặt, họ đang sử dụng các kiến trúc hiệu quả hơn và phần cứng chuyên dụng. Mặt khác, họ đang cung cấp năng lượng tái tạo cho các trung tâm dữ liệu, tạo ra một vòng tuần hoàn tích cực, trong đó AI giúp quản lý tốt hơn các nguồn năng lượng tái tạo, từ đó thúc đẩy các hệ thống AI.

Những đổi mới về hiệu quả tính toán và công nghệ làm mát trung tâm dữ liệu, cùng với việc sử dụng năng lượng tái tạo hoặc nếu được phép, năng lượng hạt nhân, sẽ đóng vai trò quan trọng để đảm bảo AI vẫn là công cụ bền vững cho quá trình chuyển đổi năng lượng.

Thành công lâu dài của phương pháp này sẽ phụ thuộc vào khả năng cân bằng giữa lợi ích vận hành của hệ thống với tính bền vững về năng lượng của chính nó, từ đó góp phần tạo nên một tương lai thực sự sạch và hiệu quả. Tôi sẽ viết cụ thể hơn về chủ đề này sau.

Tài nguyên cho sự phát triển kinh doanh

Ngày 9 tháng 11 năm 2025

Xu hướng AI 2025: 6 giải pháp chiến lược cho việc triển khai AI suôn sẻ

87% công ty thừa nhận AI là một yếu tố cạnh tranh cần thiết, nhưng nhiều công ty lại không tích hợp được nó—vấn đề không nằm ở công nghệ, mà là ở cách tiếp cận. 73% giám đốc điều hành cho rằng tính minh bạch (AI có thể giải thích được) là yếu tố then chốt để nhận được sự đồng thuận của các bên liên quan, trong khi việc triển khai thành công tuân theo chiến lược "bắt đầu nhỏ, nghĩ lớn": các dự án thí điểm có mục tiêu, giá trị cao thay vì chuyển đổi kinh doanh toàn diện. Trường hợp thực tế: Một công ty sản xuất triển khai bảo trì dự đoán AI trên một dây chuyền sản xuất duy nhất, đạt được mức giảm 67% thời gian ngừng hoạt động trong 60 ngày, thúc đẩy việc áp dụng trên toàn doanh nghiệp. Các phương pháp hay nhất đã được kiểm chứng: ưu tiên tích hợp API/phần mềm trung gian hơn là thay thế hoàn toàn để giảm đường cong học tập; dành 30% nguồn lực cho quản lý thay đổi với đào tạo theo vai trò cụ thể giúp tăng 40% tốc độ áp dụng và tăng 65% mức độ hài lòng của người dùng; triển khai song song để xác thực kết quả AI so với các phương pháp hiện có; giảm dần hiệu suất với các hệ thống dự phòng; chu kỳ đánh giá hàng tuần trong 90 ngày đầu tiên, theo dõi hiệu suất kỹ thuật, tác động kinh doanh, tỷ lệ áp dụng và ROI. Thành công đòi hỏi phải cân bằng giữa các yếu tố kỹ thuật và con người: những người tiên phong về AI nội bộ, tập trung vào lợi ích thực tế và tính linh hoạt trong quá trình phát triển.
Ngày 9 tháng 11 năm 2025

Các nhà phát triển và AI trong trang web: Thách thức, công cụ và phương pháp hay nhất: Góc nhìn quốc tế

Ý đang kẹt ở mức 8,2% ứng dụng AI (so với mức trung bình 13,5% của EU), trong khi trên toàn cầu, 40% công ty đã sử dụng AI trong vận hành—và những con số này cho thấy lý do tại sao khoảng cách này lại nghiêm trọng: chatbot của Amtrak tạo ra ROI 800%, GrandStay tiết kiệm 2,1 triệu đô la/năm bằng cách xử lý 72% yêu cầu một cách tự động, và Telenor tăng doanh thu 15%. Báo cáo này khám phá việc triển khai AI trên các trang web với các trường hợp thực tế (Lutech Brain cho đấu thầu, Netflix cho đề xuất, L'Oréal Beauty Gifter với mức tương tác gấp 27 lần so với email) và giải quyết các thách thức kỹ thuật trong thế giới thực: chất lượng dữ liệu, sai lệch thuật toán, tích hợp với các hệ thống cũ và xử lý thời gian thực. Từ các giải pháp—điện toán biên để giảm độ trễ, kiến ​​trúc mô-đun, chiến lược chống thiên vị—đến các vấn đề đạo đức (quyền riêng tư, bong bóng lọc, khả năng truy cập cho người dùng khuyết tật) cho đến các trường hợp của chính phủ (Helsinki với bản dịch AI đa ngôn ngữ), hãy khám phá cách các nhà phát triển web đang chuyển đổi từ lập trình viên sang chiến lược gia trải nghiệm người dùng và lý do tại sao những người điều hướng sự phát triển này ngày nay sẽ thống trị web trong tương lai.
Ngày 9 tháng 11 năm 2025

Hệ thống hỗ trợ quyết định AI: Sự trỗi dậy của "Cố vấn" trong lãnh đạo doanh nghiệp

77% công ty sử dụng AI, nhưng chỉ 1% có các triển khai "hoàn thiện"—vấn đề không nằm ở công nghệ, mà là ở cách tiếp cận: tự động hóa hoàn toàn so với cộng tác thông minh. Goldman Sachs, sử dụng cố vấn AI trên 10.000 nhân viên, đã tăng 30% hiệu quả tiếp cận và tăng 12% doanh số bán chéo trong khi vẫn duy trì quyết định của con người; Kaiser Permanente ngăn ngừa 500 ca tử vong mỗi năm bằng cách phân tích 100 mục mỗi giờ trước 12 giờ, nhưng lại để bác sĩ chẩn đoán. Mô hình cố vấn giải quyết khoảng cách niềm tin (chỉ 44% tin tưởng AI doanh nghiệp) thông qua ba trụ cột: AI có thể giải thích được với lập luận minh bạch, điểm số tin cậy được hiệu chỉnh và phản hồi liên tục để cải thiện. Các con số: Tác động 22,3 nghìn tỷ đô la vào năm 2030, các cộng tác viên AI chiến lược sẽ đạt ROI gấp 4 lần vào năm 2026. Lộ trình ba giai đoạn thiết thực—đánh giá kỹ năng và quản trị, thí điểm với các chỉ số tin cậy, mở rộng dần dần với đào tạo liên tục—áp dụng cho tài chính (đánh giá rủi ro có giám sát), chăm sóc sức khỏe (hỗ trợ chẩn đoán) và sản xuất (bảo trì dự đoán). Tương lai không phải là AI thay thế con người mà là sự phối hợp hiệu quả giữa con người và máy móc.