Việc kinh doanh

Dữ liệu đào tạo AI: Doanh nghiệp trị giá 10 tỷ đô la thúc đẩy trí tuệ nhân tạo

Scale AI có giá trị 29 tỷ đô la, và có lẽ bạn chưa từng nghe đến. Đây là ngành công nghiệp dữ liệu đào tạo vô hình, nền tảng cho ChatGPT và Stable Diffusion—một thị trường trị giá 9,58 tỷ đô la, tăng trưởng 27,7% mỗi năm. Chi phí đã tăng vọt 4.300% kể từ năm 2020 (Gemini Ultra: 192 triệu đô la). Nhưng đến năm 2028, sẽ không còn văn bản người dùng nào được công khai nữa. Trong khi đó, các vụ kiện bản quyền và hàng triệu hộ chiếu được tìm thấy trong các tập dữ liệu. Đối với các doanh nghiệp: bạn có thể bắt đầu miễn phí với Hugging Face và Google Colab.

Ngành công nghiệp vô hình giúp ChatGPT, Stable Diffusion và mọi hệ thống AI hiện đại khác trở nên khả thi

Bí mật được giữ kín nhất của AI

Khi sử dụng ChatGPT để soạn email hoặc tạo hình ảnh bằng Midjourney, bạn hiếm khi nghĩ đến "phép màu" đằng sau AI. Tuy nhiên, đằng sau mỗi phản hồi thông minh và mỗi hình ảnh được tạo ra là một ngành công nghiệp trị giá hàng tỷ đô la mà ít người nhắc đến: thị trường dữ liệu đào tạo AI .

Theo MarketsandMarkets , lĩnh vực này sẽ đạt giá trị 9,58 tỷ đô la vào năm 2029 với mức tăng trưởng hàng năm là 27,7%, chính là động lực thực sự của trí tuệ nhân tạo hiện đại. Nhưng chính xác thì ngành kinh doanh ẩn này hoạt động như thế nào?

Hệ sinh thái vô hình di chuyển hàng tỷ người

Những gã khổng lồ thương mại

Thế giới dữ liệu đào tạo AI được thống trị bởi một số công ty mà hầu hết mọi người chưa từng nghe đến:

Scale AI , công ty lớn nhất trong ngành với 28% thị phần , gần đây đã được định giá 29 tỷ đô la sau khoản đầu tư của Meta. Khách hàng doanh nghiệp của họ chi trả từ 100.000 đến vài triệu đô la mỗi năm cho dữ liệu chất lượng cao.

Appen , có trụ sở tại Úc, vận hành một mạng lưới toàn cầu với hơn 1 triệu chuyên gia tại 170 quốc gia, chuyên dán nhãn và quản lý dữ liệu thủ công cho AI. Các công ty như Airbnb, John Deere và Procter & Gamble sử dụng dịch vụ của họ để "đào tạo" các mô hình AI của mình.

Thế giới nguồn mở

Song song với đó, còn có một hệ sinh thái nguồn mở do các tổ chức như LAION (Mạng lưới mở trí tuệ nhân tạo quy mô lớn) dẫn đầu, một tổ chức phi lợi nhuận của Đức đã tạo ra LAION-5B , tập dữ liệu gồm 5,85 tỷ cặp hình ảnh-văn bản giúp Stable Diffusion trở nên khả thi.

Common Crawl phát hành hàng terabyte dữ liệu web thô hàng tháng, được sử dụng để đào tạo GPT-3, LLaMA và nhiều mô hình ngôn ngữ khác.

Chi phí ẩn của trí tuệ nhân tạo

Điều mà công chúng không biết là việc đào tạo một mô hình AI hiện đại đã trở nên tốn kém đến mức nào. Theo Epoch AI , chi phí đã tăng gấp 2-3 lần mỗi năm trong tám năm qua .

Ví dụ về chi phí thực tế:

Sự thật đáng ngạc nhiên nhất là gì? Theo AltIndex.com , chi phí đào tạo AI đã tăng 4.300% kể từ năm 2020 .

Những thách thức về mặt đạo đức và pháp lý của ngành

Câu hỏi về bản quyền

Một trong những vấn đề gây tranh cãi nhất liên quan đến việc sử dụng tài liệu có bản quyền. Vào tháng 2 năm 2025, một tòa án Delaware đã phán quyết trong vụ Thomson Reuters kiện ROSS Intelligence rằng việc đào tạo AI có thể cấu thành hành vi vi phạm bản quyền trực tiếp, bác bỏ lập luận "sử dụng hợp lý".

Văn phòng Bản quyền Hoa Kỳ đã công bố báo cáo dài 108 trang, kết luận rằng một số cách sử dụng không thể được coi là sử dụng hợp lý, mở ra khả năng các công ty AI phải chịu chi phí cấp phép rất lớn.

Quyền riêng tư và Dữ liệu cá nhân

Một cuộc điều tra của MIT Technology Review cho thấy DataComp CommonPool, một trong những bộ dữ liệu được sử dụng rộng rãi nhất, chứa hàng triệu hình ảnh hộ chiếu, thẻ tín dụng và giấy khai sinh. Với hơn 2 triệu lượt tải xuống trong hai năm qua, điều này làm dấy lên những lo ngại đáng kể về quyền riêng tư.

Tương lai: Sự khan hiếm và đổi mới

Vấn đề "Dữ liệu đỉnh"

Các chuyên gia dự đoán rằng đến năm 2028, hầu hết văn bản công khai do con người tạo ra có sẵn trực tuyến sẽ được sử dụng . Kịch bản "dữ liệu đỉnh điểm" này đang thúc đẩy các công ty hướng tới các giải pháp sáng tạo:

  • Dữ liệu tổng hợp : Tạo dữ liệu đào tạo nhân tạo
  • Thỏa thuận cấp phép : Quan hệ đối tác chiến lược như giữa OpenAI và Financial Times
  • Dữ liệu đa phương thức : Kết hợp văn bản, hình ảnh, âm thanh và video

Quy định mới sắp ra mắt

Đạo luật minh bạch AI của California sẽ yêu cầu các công ty tiết lộ các tập dữ liệu mà họ sử dụng cho mục đích đào tạo, trong khi EU đang thực hiện các yêu cầu tương tự trong Đạo luật AI của mình.

Cơ hội cho các công ty Ý

Đối với các công ty muốn phát triển giải pháp AI, việc hiểu hệ sinh thái này là rất quan trọng:

Các lựa chọn tiết kiệm:

Giải pháp doanh nghiệp:

  • Mở rộng quy mô AIAppen cho các dự án quan trọng
  • Dịch vụ chuyên biệt : Giống như Nexdata cho NLP hoặc FileMarket AI cho dữ liệu âm thanh

Kết luận

Thị trường dữ liệu đào tạo AI có giá trị 9,58 tỷ đô la và tăng trưởng với tốc độ 27,7% mỗi năm. Ngành công nghiệp vô hình này không chỉ là động lực của AI hiện đại mà còn là một trong những thách thức đạo đức và pháp lý lớn nhất của thời đại chúng ta.

Trong bài viết tiếp theo, chúng ta sẽ khám phá cách các công ty thực sự có thể bước vào thế giới này, với hướng dẫn thực tế để bắt đầu phát triển các giải pháp AI bằng cách sử dụng các tập dữ liệu và công cụ hiện có.

Đối với những người muốn tìm hiểu sâu hơn ngay lập tức, chúng tôi đã soạn thảo một hướng dẫn chi tiết với lộ trình triển khai, chi phí cụ thể và bộ công cụ hoàn chỉnh - có thể tải xuống miễn phí bằng cách đăng ký newsletter .

Các liên kết hữu ích để bắt đầu ngay:

Nguồn kỹ thuật:

Đừng chờ đợi "cuộc cách mạng AI". Hãy tạo ra nó. Chỉ một tháng nữa, bạn có thể có mô hình hoạt động đầu tiên, trong khi những người khác vẫn đang lên kế hoạch.

Tài nguyên cho sự phát triển kinh doanh

Ngày 9 tháng 11 năm 2025

Xu hướng AI 2025: 6 giải pháp chiến lược cho việc triển khai AI suôn sẻ

87% công ty thừa nhận AI là một yếu tố cạnh tranh cần thiết, nhưng nhiều công ty lại không tích hợp được nó—vấn đề không nằm ở công nghệ, mà là ở cách tiếp cận. 73% giám đốc điều hành cho rằng tính minh bạch (AI có thể giải thích được) là yếu tố then chốt để nhận được sự đồng thuận của các bên liên quan, trong khi việc triển khai thành công tuân theo chiến lược "bắt đầu nhỏ, nghĩ lớn": các dự án thí điểm có mục tiêu, giá trị cao thay vì chuyển đổi kinh doanh toàn diện. Trường hợp thực tế: Một công ty sản xuất triển khai bảo trì dự đoán AI trên một dây chuyền sản xuất duy nhất, đạt được mức giảm 67% thời gian ngừng hoạt động trong 60 ngày, thúc đẩy việc áp dụng trên toàn doanh nghiệp. Các phương pháp hay nhất đã được kiểm chứng: ưu tiên tích hợp API/phần mềm trung gian hơn là thay thế hoàn toàn để giảm đường cong học tập; dành 30% nguồn lực cho quản lý thay đổi với đào tạo theo vai trò cụ thể giúp tăng 40% tốc độ áp dụng và tăng 65% mức độ hài lòng của người dùng; triển khai song song để xác thực kết quả AI so với các phương pháp hiện có; giảm dần hiệu suất với các hệ thống dự phòng; chu kỳ đánh giá hàng tuần trong 90 ngày đầu tiên, theo dõi hiệu suất kỹ thuật, tác động kinh doanh, tỷ lệ áp dụng và ROI. Thành công đòi hỏi phải cân bằng giữa các yếu tố kỹ thuật và con người: những người tiên phong về AI nội bộ, tập trung vào lợi ích thực tế và tính linh hoạt trong quá trình phát triển.
Ngày 9 tháng 11 năm 2025

Các nhà phát triển và AI trong trang web: Thách thức, công cụ và phương pháp hay nhất: Góc nhìn quốc tế

Ý đang kẹt ở mức 8,2% ứng dụng AI (so với mức trung bình 13,5% của EU), trong khi trên toàn cầu, 40% công ty đã sử dụng AI trong vận hành—và những con số này cho thấy lý do tại sao khoảng cách này lại nghiêm trọng: chatbot của Amtrak tạo ra ROI 800%, GrandStay tiết kiệm 2,1 triệu đô la/năm bằng cách xử lý 72% yêu cầu một cách tự động, và Telenor tăng doanh thu 15%. Báo cáo này khám phá việc triển khai AI trên các trang web với các trường hợp thực tế (Lutech Brain cho đấu thầu, Netflix cho đề xuất, L'Oréal Beauty Gifter với mức tương tác gấp 27 lần so với email) và giải quyết các thách thức kỹ thuật trong thế giới thực: chất lượng dữ liệu, sai lệch thuật toán, tích hợp với các hệ thống cũ và xử lý thời gian thực. Từ các giải pháp—điện toán biên để giảm độ trễ, kiến ​​trúc mô-đun, chiến lược chống thiên vị—đến các vấn đề đạo đức (quyền riêng tư, bong bóng lọc, khả năng truy cập cho người dùng khuyết tật) cho đến các trường hợp của chính phủ (Helsinki với bản dịch AI đa ngôn ngữ), hãy khám phá cách các nhà phát triển web đang chuyển đổi từ lập trình viên sang chiến lược gia trải nghiệm người dùng và lý do tại sao những người điều hướng sự phát triển này ngày nay sẽ thống trị web trong tương lai.
Ngày 9 tháng 11 năm 2025

Hệ thống hỗ trợ quyết định AI: Sự trỗi dậy của "Cố vấn" trong lãnh đạo doanh nghiệp

77% công ty sử dụng AI, nhưng chỉ 1% có các triển khai "hoàn thiện"—vấn đề không nằm ở công nghệ, mà là ở cách tiếp cận: tự động hóa hoàn toàn so với cộng tác thông minh. Goldman Sachs, sử dụng cố vấn AI trên 10.000 nhân viên, đã tăng 30% hiệu quả tiếp cận và tăng 12% doanh số bán chéo trong khi vẫn duy trì quyết định của con người; Kaiser Permanente ngăn ngừa 500 ca tử vong mỗi năm bằng cách phân tích 100 mục mỗi giờ trước 12 giờ, nhưng lại để bác sĩ chẩn đoán. Mô hình cố vấn giải quyết khoảng cách niềm tin (chỉ 44% tin tưởng AI doanh nghiệp) thông qua ba trụ cột: AI có thể giải thích được với lập luận minh bạch, điểm số tin cậy được hiệu chỉnh và phản hồi liên tục để cải thiện. Các con số: Tác động 22,3 nghìn tỷ đô la vào năm 2030, các cộng tác viên AI chiến lược sẽ đạt ROI gấp 4 lần vào năm 2026. Lộ trình ba giai đoạn thiết thực—đánh giá kỹ năng và quản trị, thí điểm với các chỉ số tin cậy, mở rộng dần dần với đào tạo liên tục—áp dụng cho tài chính (đánh giá rủi ro có giám sát), chăm sóc sức khỏe (hỗ trợ chẩn đoán) và sản xuất (bảo trì dự đoán). Tương lai không phải là AI thay thế con người mà là sự phối hợp hiệu quả giữa con người và máy móc.